3.17.91 \(\int \frac {\sqrt {1-2 x} (2+3 x)^2}{3+5 x} \, dx\)

Optimal. Leaf size=69 \[ \frac {9}{50} (1-2 x)^{5/2}-\frac {37}{50} (1-2 x)^{3/2}+\frac {2}{125} \sqrt {1-2 x}-\frac {2}{125} \sqrt {\frac {11}{5}} \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {88, 50, 63, 206} \begin {gather*} \frac {9}{50} (1-2 x)^{5/2}-\frac {37}{50} (1-2 x)^{3/2}+\frac {2}{125} \sqrt {1-2 x}-\frac {2}{125} \sqrt {\frac {11}{5}} \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[1 - 2*x]*(2 + 3*x)^2)/(3 + 5*x),x]

[Out]

(2*Sqrt[1 - 2*x])/125 - (37*(1 - 2*x)^(3/2))/50 + (9*(1 - 2*x)^(5/2))/50 - (2*Sqrt[11/5]*ArcTanh[Sqrt[5/11]*Sq
rt[1 - 2*x]])/125

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {\sqrt {1-2 x} (2+3 x)^2}{3+5 x} \, dx &=\int \left (\frac {111}{50} \sqrt {1-2 x}-\frac {9}{10} (1-2 x)^{3/2}+\frac {\sqrt {1-2 x}}{25 (3+5 x)}\right ) \, dx\\ &=-\frac {37}{50} (1-2 x)^{3/2}+\frac {9}{50} (1-2 x)^{5/2}+\frac {1}{25} \int \frac {\sqrt {1-2 x}}{3+5 x} \, dx\\ &=\frac {2}{125} \sqrt {1-2 x}-\frac {37}{50} (1-2 x)^{3/2}+\frac {9}{50} (1-2 x)^{5/2}+\frac {11}{125} \int \frac {1}{\sqrt {1-2 x} (3+5 x)} \, dx\\ &=\frac {2}{125} \sqrt {1-2 x}-\frac {37}{50} (1-2 x)^{3/2}+\frac {9}{50} (1-2 x)^{5/2}-\frac {11}{125} \operatorname {Subst}\left (\int \frac {1}{\frac {11}{2}-\frac {5 x^2}{2}} \, dx,x,\sqrt {1-2 x}\right )\\ &=\frac {2}{125} \sqrt {1-2 x}-\frac {37}{50} (1-2 x)^{3/2}+\frac {9}{50} (1-2 x)^{5/2}-\frac {2}{125} \sqrt {\frac {11}{5}} \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 51, normalized size = 0.74 \begin {gather*} \frac {1}{625} \left (5 \sqrt {1-2 x} \left (90 x^2+95 x-68\right )-2 \sqrt {55} \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[1 - 2*x]*(2 + 3*x)^2)/(3 + 5*x),x]

[Out]

(5*Sqrt[1 - 2*x]*(-68 + 95*x + 90*x^2) - 2*Sqrt[55]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/625

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.06, size = 61, normalized size = 0.88 \begin {gather*} \frac {1}{250} \left (45 (1-2 x)^2-185 (1-2 x)+4\right ) \sqrt {1-2 x}-\frac {2}{125} \sqrt {\frac {11}{5}} \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(Sqrt[1 - 2*x]*(2 + 3*x)^2)/(3 + 5*x),x]

[Out]

((4 - 185*(1 - 2*x) + 45*(1 - 2*x)^2)*Sqrt[1 - 2*x])/250 - (2*Sqrt[11/5]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/12
5

________________________________________________________________________________________

fricas [A]  time = 1.22, size = 56, normalized size = 0.81 \begin {gather*} \frac {1}{625} \, \sqrt {11} \sqrt {5} \log \left (\frac {\sqrt {11} \sqrt {5} \sqrt {-2 \, x + 1} + 5 \, x - 8}{5 \, x + 3}\right ) + \frac {1}{125} \, {\left (90 \, x^{2} + 95 \, x - 68\right )} \sqrt {-2 \, x + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^2*(1-2*x)^(1/2)/(3+5*x),x, algorithm="fricas")

[Out]

1/625*sqrt(11)*sqrt(5)*log((sqrt(11)*sqrt(5)*sqrt(-2*x + 1) + 5*x - 8)/(5*x + 3)) + 1/125*(90*x^2 + 95*x - 68)
*sqrt(-2*x + 1)

________________________________________________________________________________________

giac [A]  time = 1.24, size = 74, normalized size = 1.07 \begin {gather*} \frac {9}{50} \, {\left (2 \, x - 1\right )}^{2} \sqrt {-2 \, x + 1} - \frac {37}{50} \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} + \frac {1}{625} \, \sqrt {55} \log \left (\frac {{\left | -2 \, \sqrt {55} + 10 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}\right )}}\right ) + \frac {2}{125} \, \sqrt {-2 \, x + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^2*(1-2*x)^(1/2)/(3+5*x),x, algorithm="giac")

[Out]

9/50*(2*x - 1)^2*sqrt(-2*x + 1) - 37/50*(-2*x + 1)^(3/2) + 1/625*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2
*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 2/125*sqrt(-2*x + 1)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 47, normalized size = 0.68 \begin {gather*} -\frac {2 \sqrt {55}\, \arctanh \left (\frac {\sqrt {55}\, \sqrt {-2 x +1}}{11}\right )}{625}-\frac {37 \left (-2 x +1\right )^{\frac {3}{2}}}{50}+\frac {9 \left (-2 x +1\right )^{\frac {5}{2}}}{50}+\frac {2 \sqrt {-2 x +1}}{125} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x+2)^2*(-2*x+1)^(1/2)/(5*x+3),x)

[Out]

-37/50*(-2*x+1)^(3/2)+9/50*(-2*x+1)^(5/2)-2/625*arctanh(1/11*55^(1/2)*(-2*x+1)^(1/2))*55^(1/2)+2/125*(-2*x+1)^
(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.19, size = 64, normalized size = 0.93 \begin {gather*} \frac {9}{50} \, {\left (-2 \, x + 1\right )}^{\frac {5}{2}} - \frac {37}{50} \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} + \frac {1}{625} \, \sqrt {55} \log \left (-\frac {\sqrt {55} - 5 \, \sqrt {-2 \, x + 1}}{\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}}\right ) + \frac {2}{125} \, \sqrt {-2 \, x + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^2*(1-2*x)^(1/2)/(3+5*x),x, algorithm="maxima")

[Out]

9/50*(-2*x + 1)^(5/2) - 37/50*(-2*x + 1)^(3/2) + 1/625*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) +
 5*sqrt(-2*x + 1))) + 2/125*sqrt(-2*x + 1)

________________________________________________________________________________________

mupad [B]  time = 1.18, size = 48, normalized size = 0.70 \begin {gather*} \frac {2\,\sqrt {1-2\,x}}{125}-\frac {37\,{\left (1-2\,x\right )}^{3/2}}{50}+\frac {9\,{\left (1-2\,x\right )}^{5/2}}{50}+\frac {\sqrt {55}\,\mathrm {atan}\left (\frac {\sqrt {55}\,\sqrt {1-2\,x}\,1{}\mathrm {i}}{11}\right )\,2{}\mathrm {i}}{625} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1 - 2*x)^(1/2)*(3*x + 2)^2)/(5*x + 3),x)

[Out]

(55^(1/2)*atan((55^(1/2)*(1 - 2*x)^(1/2)*1i)/11)*2i)/625 + (2*(1 - 2*x)^(1/2))/125 - (37*(1 - 2*x)^(3/2))/50 +
 (9*(1 - 2*x)^(5/2))/50

________________________________________________________________________________________

sympy [A]  time = 6.21, size = 102, normalized size = 1.48 \begin {gather*} \frac {9 \left (1 - 2 x\right )^{\frac {5}{2}}}{50} - \frac {37 \left (1 - 2 x\right )^{\frac {3}{2}}}{50} + \frac {2 \sqrt {1 - 2 x}}{125} + \frac {22 \left (\begin {cases} - \frac {\sqrt {55} \operatorname {acoth}{\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} \right )}}{55} & \text {for}\: 2 x - 1 < - \frac {11}{5} \\- \frac {\sqrt {55} \operatorname {atanh}{\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} \right )}}{55} & \text {for}\: 2 x - 1 > - \frac {11}{5} \end {cases}\right )}{125} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**2*(1-2*x)**(1/2)/(3+5*x),x)

[Out]

9*(1 - 2*x)**(5/2)/50 - 37*(1 - 2*x)**(3/2)/50 + 2*sqrt(1 - 2*x)/125 + 22*Piecewise((-sqrt(55)*acoth(sqrt(55)*
sqrt(1 - 2*x)/11)/55, 2*x - 1 < -11/5), (-sqrt(55)*atanh(sqrt(55)*sqrt(1 - 2*x)/11)/55, 2*x - 1 > -11/5))/125

________________________________________________________________________________________